Science Behind the Supps: HypOxygen

The Oxygenation Enhancement Support Formula

HypOxygen - The Oxygenation Enhancement Support Formula

HypOxygen is a potent new product that contains specific nutrients needed to support the production and regulation of red blood cells and hemoglobin, which transport oxygen molecules throughout the body. HypOxygen also provides nutrients with vasodilation effects, which further promotes oxygen delivery to muscle tissue and accelerates the removal of metabolic waste byproducts such as lactic acid and ammonia. High intensity exercise creates an oxygen deficit that causes a buildup of these compounds and results in the rapid onset of fatigue. The synergistic ingredients in HypOxygen have been shown to have positive effects upon VO2 max, which is the maximum amount of oxygen an individual can utilize during exercise.

EPO Stimulators

The sports nutrition industry is rapidly becoming inundated with products touting their ability to stimulate the production of erythropoietin (EPO) and increase red blood cells and hemoglobin. But, what’s the end game for these products? Athletes are looking for legal methods to enhance oxygen uptake and delivery to working muscle tissue and accelerate the removal of metabolic waste byproducts. In a word, they want improved “recovery.” What’s strange is that most of these so-called EPO boosting supplements only contain an insignificant amount of iron, which is the most vital nutrient involved in the production of new oxygen carrying red blood cells. Even injectable EPO being used illegally by athletes requires an adequate supply of iron for red blood cell synthesis. In short, if EPO is present without sufficient iron, there is insufficient fuel for red blood cell production.

Iron Has Been Getting a Bad Rap

For many years now, there has been a tendency for supplement companies to market iron free products. This trend started with an often quoted Finnish study published in 1992 by Salonen, et al. These researchers found that men with high serum ferritin levels (index of iron status) had a two-fold increase in the incidence of heart attacks (1). They hypothesized that free radicals induced by iron caused the increase in the rate of heart disease. However, later research provided an alternate explanation for these observations. It is now believed that there is an inflammatory component to heart disease and that serum ferritin functions as an acute reactant and becomes elevated as a part of the inflammatory process (2). In fact, three major studies have been published since the Finnish report, which have found NO relationship between heart disease and elevated iron status (3, 4, 5). There is little evidence that supplemental iron has played any role in increasing the incidence of heart disease. Nevertheless, iron supplementation has continued to get an undeserved bad rap for almost two decades. There is a danger of iron overload to people with a rare hereditary disease called hemochromatosis (excessive iron accumulation). This condition has been found to exist in between 0.07% and 0.5% of people in various surveys (6). (It is advisable to ask your doctor to check your serum ferritin along with your hemoglobin before iron supplementation).

Exercise at High Altitude and Iron Stores

Nutritional factors, particularly iron stores, play a critical role in an athlete’s ability to respond to high altitude or hypoxic (low oxygen) training. In a series of studies involving more than 100 competitive distance runners, 40% (60% of women and 25% of men) were found to have reduced iron stores based on a low serum ferritin level. The athletes with a low ferritin level prior to high altitude exposure (male and female) were unable to increase the volume of red blood cell mass and did not increase VO2 max or improve performance (7). Iron depletion may not only compromise oxygen carrying capacity, but also reduces VO2 max and performance, even in non-anemic athletes. Thus iron stores should be normalized before undertaking a period of high altitude or simulated altitude training.

High altitude or hypoxic training has been shown to stimulate physiological adaptations, including increases in EPO and red blood cell levels. This enhances the body's oxygen utilization system and increases the efficiency of cellular energy. HypOxygen can be used effectively in conjunction with all hypoxic training methods (tents, chambers, masks, etc.), and offers advantages that can considerably improve athletic training, performance, recovery and overall health.

Enter to Win a Snac Prize Pack>>

Return to Science Behind the Supps>>



Subscribe to Flexonline

Give a Gift
Customer Service